
Functional Testing
Software Engineering

Andreas Zeller • Saarland University

From Pressman, “Software Engineering – a practitioner’s approach”,
Chapter 14
and Pezze + Young, “Software Testing and Analysis”, Chapters 10-11

Today, we’ll talk about testing – how to test software. The question is:
How do we design tests? And we’ll start with functional testing.

Testing

Testing
Again, a test. We test whether we
can evacuate 500 people from an
Airbus A380 in 90 seconds. This is
a test.

Even more Testing
And: We test whether a concrete
wall (say, for a nuclear reactor)
withstands a plane crash at 900
km/h. Indeed, it does.

Testing
Edgar Degas: The Rehearsal. With
a rehearsal, we want to check
whether everything will work as
expected. This is a test.

Software is manifold
We can also test software this way.
But software is not a planned linear
show – it has a multitude of
possibilities. So: if it works once,
will it work again? This is the
central issue of testing – and of
any verification method.

Software is manifold
We can also test software this way.
But software is not a planned linear
show – it has a multitude of
possibilities. So: if it works once,
will it work again? This is the
central issue of testing – and of
any verification method.

Software is manifold
The problem is: There are many
possible executions. And as the
number grows…

Software is manifold
and grows…

Software is manifold
and grows…

Software is manifold
and grows…

Testing

Configurations

…you get an infinite number of
possible executions, but you can
only conduct a finite number of
tests.

What to test?

Configurations

So, how can we cover as much
behavior as possible?

Dijkstra’s Curse

Configurations

Testing can only find the
presence of errors, 
 not their absence

But still, testing suffers from what I
call Dijkstra’s curse – a double
meaning, as it applies both to
testing as to his famous quote. Is
there something that can find the
absence of errors?

Formal Verification

Configurations

Formal Verification

Configurations

Ab
st

ra
ct

io
n

Formal Verification

Configurations

Ab
st

ra
ct

io
n

Areas missing might be: the
operating system, the hardware, all
of the world the system is
embedded in (including humans!)

Formal Verification

Configurations

Ab
st

ra
ct

io
n

Areas missing might be: the
operating system, the hardware, all
of the world the system is
embedded in (including humans!)

Zeller’s Variation on Dijkstra

Configurations

Ab
st

ra
ct

io
n Verification can only find

the absence of errors, 
 but never their presence

Areas missing might be: the
operating system, the hardware, all
of the world the system is
embedded in (including humans!)

The Best of two Worlds

Ab
st

ra
ct

io
n

Configurations

We might not be able to cover all
Abstraction levels in all
Konfigurationens, but we can do
our best to cover as much as
possible.

What to test?

Configurations

So, how can we cover as much
behavior as possible?

Functional Testing
Software Engineering

Andreas Zeller • Saarland University

From Pressman, “Software Engineering – a practitioner’s approach”,
Chapter 14
and Pezze + Young, “Software Testing and Analysis”, Chapters 10-11

Today, we’ll talk about testing – how to test software. The question is:
How do we design tests? And we’ll start with functional testing.

Functional testing is also called “black-box” testing, because we see
the program as a black box – that is, we ignore how it is being written

in contrast to structural or “white-box” testing, where the program is the
base.

If the program is not the base, then what is? Simple: it’s the
specification.

Testing Tactics

• Tests based on spec

• Test covers as much 
specified behavior  
as possible

• Tests based on code

• Test covers as much
implemented behavior 
as possible

Functional  
“black box”

Structural  
“white box”

If the program is not the base, then what is? Simple: it’s the
specification.

Why Functional?

• Program code not necessary

• Early functional test design has benefits 
reveals spec problems • assesses testability • gives additional
explanation of spec • may even serve as spec, as in XP

Functional  
“black box”

Structural  
“white box”

Why Functional?

• Best for missing logic defects 
Common problem: Some program logic was simply forgotten 
Structural testing would not focus on code that is not there

• Applies at all granularity levels 
unit tests • integration tests • system tests • regression tests

Functional  
“black box”

Structural  
“white box”

Structural testing can not detect that some required feature is missing
in the code
Functional testing applies at all granularity levels (in contrast to
structural testing, which only applies to unit and integration testing)

Random Testing

• Pick possible inputs uniformly

• Avoids designer bias 
A real problem: The test designer can make the same logical
mistakes and bad assumptions as the program designer
(especially if they are the same person)

• But treats all inputs as equally valuable

One might think that picking random samples might be a good idea.

Abstrakt gesehen, ist Angry Birds
dasselbe wie die Ariane: bei beiden
geht es darum, ballistisch ein Ziel
zu treffen – in unserem Fall zwei
Schweine. (Sie ahnen nicht, wie
lange ich gespielt habe, bis ich das
hinbekommen habe - alles im
Dienste der Wissenschaft!)

⦨⇢ Angle

Force

Wenn wir bei Angry Birds wieder
abstrahieren, ist das Spiel
eigentlich ganz einfach. Sie
müssen nur zwei Dinge auswählen:
Den * Winkel und die Kraft.

Diese beiden legen die Flugbahn
fest. Die Frage ist: Können wir alle
Flugbahnen testen?

Infinite Monkey Theorem

Youtube

In unserem Fall sieht das so aus:
Der Affe klickt wahllos durch die
Gegend.

⦨⇢ Angle

Force

232 = 4.294.967.296
different values

232 = 4.294.967.296
different values

Wie lange dauert es, bis der Affe
alle Flugbahnen durch hat? Für
Winkel und Kraft gibt es jeweils
2^32 different values.

232 = 4.294.967.296
different values

232 = 4.294.967.296
different values⨉ =

264 = 18.446.744.073.709.551.616 
different runs

Das sind dann 18 Trillionen
verschiedene mögliche Abläufe…

Source: http://www.gadgets-
club.com/happy-ipad-user

18.446.744.073.709.551.616 Minutes
gadgets-club.com

Wenn ein Affe die alle ausprobieren
soll, sagen wir 1 Minute pro Spiel,
dann ist der Affe längst tot, bevor
er fertig ist. Das Universum
übrigens auch.

Ich kann aber…

Source: http://www.gadgets-
club.com/happy-ipad-user

9.223.372.036.854.775.808 Minutes

zwei Affen nehme, dann geht’s
doppelt so schnell…

4.611.686.018.427.387.904 Minutes

mit vier nochmal doppelt so
schnell

1 Minute

18.446.744.073.709.551.616

⨉

Und wenn Sie 18 Trillionen Affen
nehme, bekommen Sie in
* einer Minute alle Flugbahnen.

18 Trillionen Affen. Wo können die
hin? Immerhin sind das pro
Mensch etwa 3 Milliarden Affen.
* Zufälligerweise haben 18
Trillionen Affen genau die Masse
der Ozeane (900 Billionen
Tonnen).
Wir nehmen also einfach alles
Wasser der Ozeane und machen
daraus Affen (Affen bestehen
größtenteils aus Wasser). Planet
der Affen, sozusagen.

Wobei nun aber auf den untersten
Affen bis zu 10 Kilometern Affen
lasten, also 5 Tonnen –

Äh – ja. Bei der Ethik-
Kommission kriegen wir das nicht
durch.

Die Alternative zum Affen ist
* der Informatiker. Informatiker
sind smart, und die können
Programme sehr systematisch
testen und analysieren.

Functional  
specification

Independently 
testable feature

Representative 
values

Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Systematic Functional Testing

The main steps of a systematic approach to functional program testing
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)

Functional  
specification

Independently 
testable feature

identify

Testable Features

Representative 
values

Model

Test case 
specifications

identify derive

derive

Test case

generate

• Decompose system into 
independently testable features (ITF)

• An ITF need not correspond to units or
subsystems of the software

• For system testing, ITFs are exposed
through user interfaces or APIs

Testable Fatures

class Roots {  
 // Solve ax2 + bx + c = 0  
 public roots(double a, double b, double c)  
 { … }

 // Result: values for x  
 double root_one, root_two;  
}

• What are the independently testable features?

Just one – roots is a unit and thus provides exactly one single testable
feature.

Testable Fatures

• Consider a multi-function
calculator

• What are the independently
testable features?

Every single function becomes an independently testable feature.
Some functions (like memory access, for instance) are dependent on
each other, though: to retrieve a value, you must first store it.
(Note how the calculator shows the #years required for the Roots
calculation.)

Functional  
specification

Independently 
testable feature

Representative 
values

Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Testable Features

The main steps of a systematic approach to functional program testing
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)

Functional  
specification

Independently 
testable feature

Representative 
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Representative Values

• Try to select inputs 
that are especially 
valuable

• Usually by 
choosing 
representatives of equivalence classes that
are apt to fail often or not at all

The main steps of a systematic approach to functional program testing
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)

Needles in a Haystack

• To find needles,  
look systematically

• We need to find out  
what makes needles special

Failure (valuable test case)

No failure

Systematic Partition Testing
Failures are sparse in
the space of possible

inputs ...

... but dense in some
parts of the space

If we systematically test some
cases from each part, we will

include the dense parts

Functional testing is one way of
drawing orange lines to isolate

regions with likely failures

T
he

 s
pa

ce
 o

f p
os

si
bl

e
in

pu
t

va
lu

es
(t

he
 h

ay
st

ac
k)

We can think of all the possible input values to a program as little boxes ...
white boxes that the program processes correctly, and colored boxes on
which the program fails. Our problem is that there are a lot of boxes ... a
huge number, and the colored boxes are just an infinitesimal fraction of the
whole set. If we reach in and pull out boxes at random, we are unlikely to find
the colored ones.
Systematic testing says: Let’s not pull them out at random. Let’s first
subdivide the big bag of boxes into smaller groups (the pink lines), and do it in
a way that tends to concentrate the colored boxes in a few of the groups. The
number of groups needs to be much smaller than the number of boxes, so
that we can systematically reach into each group to pick one or a few boxes.
Functional testing is one variety of partition testing, a way of drawing the
orange lines so that, when one of the boxes within a orange group is a failure,
many of the other boxes in that group may also be failures. Functional testing
means using the program specification to draw pink lines.
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)

Equivalence Partitioning

Input condition Equivalence classes

range one valid, two invalid 
(larger and smaller)

specific value one valid, two invalid 
(larger and smaller)

member of a set one valid, one invalid

boolean one valid, one invalid

How do we choose equivalence classes? The key is to examine input
conditions from the spec. Each input condition induces an equivalence
class – valid and invalid inputs.

Boundary Analysis
Possible test case

• Test at lower range (valid and invalid),
at higher range (valid and invalid), and at center

How do we choose representatives rom equivalence
classes? A greater number of errors occurs at the
boundaries of an equivalence class rather than at the
“center”. Therefore, we specifically look for values
that are at the boundaries – both of the input domain
as well as at the output.

Example: ZIP Code

• Input:  
5-digit ZIP code

• Output:  
list of cities

• What are
representative
values to test?

(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)

Valid ZIP Codes

1. with 0 cities 
as output 
(0 is boundary value)

2. with 1 city  
as output

3. with many cities 
as output

(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)

Invalid ZIP Codes
4. empty input

5. 1–4 characters 
(4 is boundary value)

6. 6 characters 
(6 is boundary value)

7. very long input

8. no digits

9. non-character data

(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)

“Special” ZIP Codes

• How about a ZIP code that reads 
 
12345‘; DROP TABLE orders; SELECT
* FROM zipcodes WHERE ‘zip’ = ‘

• Or a ZIP code with 65536 characters…

• This is security testing

Gutjahr’s Hypothesis

Partition testing 
is more effective  

than random testing.

Generally, random inputs are easier to generate, but less likely to cover
parts of the specification or the code.
See Gutjahr (1999) in IEEE Transactions on Software Engineering 25,
5 (1999), 661-667

Functional  
specification

Independently 
testable feature

Representative 
values

Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Representative Values

The main steps of a systematic approach to functional program testing
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)

Functional  
specification

Independently 
testable feature

Representative 
values

Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Model-Based Testing

• Have a formal model  
that specifies software behavior

• Models typically come as

• finite state machines and

• decision structures

The main steps of a systematic approach to functional program testing
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)

0

1 2
3

4 5 6

7 8

9

Finite  
State 
Machine

As an example, consider these steps modeling a product maintenance
process…
(from Pezze + Young, “Software Testing and Analysis”, Chapter 14)

…based on these (informal) requirements
(from Pezze + Young, “Software Testing and Analysis”, Chapter 14)

Coverage Criteria

• Path coverage: Tests cover every path 
Not feasible in practice due to infinite number of paths

• State coverage: Every node is executed 
A minimum testing criterion

• Transition coverage: Every edge is executed 
Typically, a good coverage criterion to aim for

0

1 2
3

4 5 6

7 8

9

Transition
Coverage

With five test cases (one color each), we can achieve transition
coverage
(from Pezze + Young, “Software Testing and Analysis”, Chapter 14)

State-based Testing

• Protocols (e.g., network communication)

• GUIs (sequences of interactions)

• Objects (methods and states)

Finite state machines can be used to model for a large variety of
behaviors – and thus serve as a base for testing.

Account states

empty
acctopen setup Accnt

set up
acct

deposit
(initial)

working
acct

withdrawal
(final)

dead
acct close

nonworking
acct

deposit

withdraw
balance

credit
accntInfo

Figure 14.3 State diagram for Account class (adapted from [KIR94])

Here’s an example of a finite state machine representing an Account
class going through a number of states. Transition coverage means
testing each Account method once.
(From Pressman, “Software Engineering – a practitioner’s approach”,
Chapter 14)

Decision Tables
Education Individual

Education account T T F F F F F F
Current purchase >

Threshold 1 – – F F T T – –
Current purchase >

Threshold 2 – – – – F F T T
Special price <
scheduled price F T F T – – – –
Special price <

Tier 1 – – – – F T – –
Special price <

Tier 2 – – – – – – F T

Out
Edu

discount
Special
price

No 
discount

Special  
price

Tier 1  
discount

Special
price

Tier 2  
discount

Special
Price

A decision table describes under which conditions a specific outcome
comes to be. This decision table, for instance, determines the discount
for a purchase, depending on specific thresholds for the amount
purchased.
(from Pezze + Young, “Software Testing and Analysis”, Chapter 14)

Condition Coverage

• Basic criterion: Test every column 
“Don’t care” entries (–) can take arbitrary values

• Compound criterion: Test every combination 
Requires 2n tests for n conditions and is unrealistic

• Modified condition decision criterion (MCDC):
like basic criterion, but additionally, modify
each T/F value at least once 
Again, a good coverage criterion to aim for

MCDC Criterion
Education Individual

Education account T T F F F F F F
Current purchase >

Threshold 1 – – F F T T – –
Current purchase >

Threshold 2 – – – – F F T T
Special price <
scheduled price F T F T – – – –
Special price <

Tier 1 – – – – F T – –
Special price <

Tier 2 – – – – – – F T

Out Edu
discount

Special
price

No 
discount

Special  
price

Tier 1  
discount

Special
price

Tier 2  
discount

Special
Price

F

We modify the individual values in column 1 and 2 to generate four
additional test cases – but these are already tested anyway. For
instance, the modified values in column 1 are already tested in column
3.
(from Pezze + Young, “Software Testing and Analysis”, Chapter 14)

MCDC Criterion
Education Individual

Education account T T F F F F F F
Current purchase >

Threshold 1 – – F F T T – –
Current purchase >

Threshold 2 – – – – F F T T
Special price <
scheduled price F T F T – – – –
Special price <

Tier 1 – – – – F T – –
Special price <

Tier 2 – – – – – – F T

Out
Edu

discount
Special
price

No 
discount

Special  
price

Tier 1  
discount

Special
price

Tier 2  
discount

Special
Price

T

This also applies to changing the other values, so adding additional test
cases is not necessary in this case.
(from Pezze + Young, “Software Testing and Analysis”, Chapter 14)

MCDC Criterion
Education Individual

Education account T T F F F F F F
Current purchase >

Threshold 1 – – F F T T – –
Current purchase >

Threshold 2 – – – – F F T T
Special price <
scheduled price F T F T – – – –
Special price <

Tier 1 – – – – F T – –
Special price <

Tier 2 – – – – – – F T

Out
Edu

discount
Special
price

No 
discount

Special  
price

Tier 1  
discount

Special
price

Tier 2  
discount

Special
Price

F

MCDC Criterion
Education Individual

Education account T T F F F F F F
Current purchase >

Threshold 1 – – F F T T – –
Current purchase >

Threshold 2 – – – – F F T T
Special price <
scheduled price F T F T – – – –
Special price <

Tier 1 – – – – F T – –
Special price <

Tier 2 – – – – – – F T

Out Edu
discount

Special
price

No 
discount

Special  
price

Tier 1  
discount

Special
price

Tier 2  
discount

Special
Price

F

However, if we had not (yet) tested the individual accounts, the MC/DC
criterion would have uncovered them.
(from Pezze + Young, “Software Testing and Analysis”, Chapter 14)

Weyuker’s Hypothesis

The adequacy of a coverage criterion 
can only be intuitively defined.

Established by a number of studies done by E. Weyuker at AT&T. “Any
explicit relationship between coverage and error detection would mean
that we have a fixed distribution of errors over all statements and paths,
which is clearly not the case”.

Learning from the past
To decide where to put most effort in testing, one can also examine the
past – i.e., where did most defects occur in the past. The above picture
shows the distribution of security vulnerabilities in Firefox – the redder
a rectangle, the more vulnerabilities, and therefore a likely candidate
for intensive testing. The group of Andreas Zeller at Saarland
University researches how to mine such information automatically and
how to predict future defects.

Pareto’s Law

Approximately 80% of defects 
come from 20% of modules

Evidence: several studies, including Zeller’s own evidence :-)

Functional  
specification

Independently 
testable feature

Representative 
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Model-Based Testing

The main steps of a systematic approach to functional program testing
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)

Functional  
specification

Independently 
testable feature

Representative 
values

Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Deriving Test Case Specs

• Input values enumerated in previous step

• Now: need to take care of combinations

• Typically, one  
uses models and  
representative 
values to generate 
test cases

The main steps of a systematic approach to functional program testing
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)

Combinatorial Testing

IIS

Apache

MySQL Oracle

Linux

Windows OSServer

Database

Many domains come as a combination of individual
inputs. We therefore need to cope with a
combinatorial explosion.

Combinatorial Testing

• Eliminate invalid combinations 
IIS only runs on Windows, for example

• Cover all pairs of combinations 
such as MySQL on Windows and Linux

• Combinations typically generated
automatically 
and – hopefully – tested automatically, too

Pairwise Testing
IIS

Apache

MySQL Oracle

Linux

Windows IIS

Apache

MySQL Oracle

Linux

Windows

IIS

Apache

MySQL Oracle

Linux

Windows IIS

Apache

MySQL Oracle

Linux

Windows

Pairwise testing means to cover every single pair of
configurations

Testing environment

• Millions of configurations

• Testing on dozens of different machines

• All needed to find & reproduce problems

In practice, such testing needs hundreds and hundreds of PCs in every
possible configuration – Microsoft, for instance, has entire buildings
filled with every hardware imaginable  
Source: http://www.ci.newton.ma.us/MIS/Network.htm

Functional  
specification

Independently 
testable feature

Representative 
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Deriving Test Case Specs

The main steps of a systematic approach to functional program testing
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)

Functional  
specification

Independently 
testable feature

Representative 
values

Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Deriving Test Cases

• Implement test cases in code

• Requires building scaffolding –  
i.e., drivers and stubs

The main steps of a systematic approach to functional program testing
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)

Unit Tests

• Directly access units (= classes, modules,
components…) at their programming
interfaces

• Encapsulate a set of tests as a single
syntactical unit

• Available for all programming languages
(JUNIT for Java, CPPUNIT for C++, etc.)

Here’s an example for automated unit tests – the well-known JUnit

Running a Test

A test case…

1. sets up an environment for the test

2. tests the unit

3. tears down the environment again.

The environment provides the stubs such that a JUnit test case can
work. The JUnit test case is the driver.

Testing a URL Class

http://www.askigor.org/status.php?id=sample

Protocol Host Path Query

As an example, consider parsing a URL

import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;

public class URLTest extends TestCase {
 private URL askigor_url;

 // Create new test
 public URLTest(String name) { super(name); }

 // Assign a name to this test case
 public String toString() { return getName(); }

 // Setup environment
 protected void setUp() {
 askigor_url = new URL("http://www.askigor.org/" +
 "status.php?id=sample"); }
 // Release environment
 protected void tearDown() { askigor_url = null;}

The setUp() and tearDown() functions set up the environment…

 // Test for protocol (http, ftp, etc.)
 public void testProtocol() {

assertEquals(askigor_url.getProtocol(), "http");
 }

 // Test for host
 public void testHost() {

int noPort = -1;
 assertEquals(askigor_url.getHost(), "www.askigor.org");

assertEquals(askigor_url.getPort(), noPort);
 }

 // Test for path
 public void testPath() {

assertEquals(askigor_url.getPath(), "/status.php");
 }

 // Test for query part
 public void testQuery() {

assertEquals(askigor_url.getQuery(), "id=sample");
 }

This functional test
can be used
as a specification!

…while the test*() methods perform the actual tests.

 // Set up a suite of tests
 public static Test suite() {
 TestSuite suite = new TestSuite(URLTest.class);
 return suite;
 }

 // Main method: Invokes GUI
 public static void main(String args[]) {
 String[] testCaseName =
 { URLTest.class.getName() };
 // junit.textui.TestRunner.main(testCaseName);
 junit.swingui.TestRunner.main(testCaseName);
 // junit.awtui.TestRunner.main(testCaseName);
 }
}

JUnit
JUnit comes with a GUI – and is frequently integrated in programming
environments

Functional  
specification

Independently 
testable feature

Representative 
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Deriving Test Cases

The main steps of a systematic approach to functional program testing
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)

Functional  
specification

Independently 
testable feature

Representative 
values

Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Systematic Functional Testing

The main steps of a systematic approach to functional program testing
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)

Summary

